
Advanced Analysis

Kuan-Yu Chen (陳冠宇)

2020/09/23 @ TR-212, NTUST



2

Review

• Please check the uploaded HW file on the moodle!

• Space and Time complexity
– Big-Oh

– Omega
– Theta



3

Little-Oh

– The value of 𝑛0 may depend on 𝑐

• The definitions of O-notation and o-notation are similar

– 𝑓 𝑛 = O 𝑔 𝑛 , the bound 0 ≤ 𝑓(𝑛) ≤ 𝑐𝑔(𝑛) holds for some
constant 𝑐 > 0

– 𝑓 𝑛 = o 𝑔 𝑛 , the bound 0 ≤ 𝑓(𝑛) < 𝑐𝑔(𝑛) holds for all
constants 𝑐 > 0

• Examples:
– 2𝑛 = o(𝑛2)

– 2𝑛2 ≠ o(𝑛2)



4

Little-Omega

• By analogy, ω-notation is to Ω-notation as o-notation is to O-
notation

• Examples:

–
𝑛2

2
= ω(𝑛)

–
𝑛2

2
≠ ω(𝑛2)



5

Summary



6

Master Method.

• The master method provides a “cookbook” method for solving 
recurrences of the form

where 𝑎 ≥ 1 and 𝑏 > 1 are constants and 𝑓(𝑛) is a positive 
function
1. If 𝑓 𝑛 = O(𝑛log𝑏 𝑎−𝜖) for some constant 𝜖 > 0, then 𝑇 𝑛 =

Θ(𝑛log𝑏 𝑎)

2. If 𝑓 𝑛 = Θ(𝑛log𝑏 𝑎), then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎 log2 𝑛)

3. If 𝑓 𝑛 = Ω(𝑛log𝑏 𝑎+𝜖) for some constant 𝜖 > 0, and if 
𝑎𝑓(

𝑛

𝑏
) ≤ 𝑐𝑓(𝑛) for some constant 𝑐 < 1 and all sufficiently 

large 𝑛, then 𝑇 𝑛 = Θ(𝑓(𝑛))

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓(𝑛)



7

Master Method..

• The master method theorem

1. If 𝑓 𝑛 = O(𝑛log𝑏 𝑎−𝜖) for some constant 𝜖 > 0, then 𝑇 𝑛 =

Θ(𝑛log𝑏 𝑎)

2. If 𝑓 𝑛 = Θ(𝑛log𝑏 𝑎), then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎 log2 𝑛)

3. If 𝑓 𝑛 = Ω(𝑛log𝑏 𝑎+𝜖) for some constant 𝜖 > 0, and if 
𝑎𝑓(

𝑛

𝑏
) ≤ 𝑐𝑓(𝑛) for some constant 𝑐 < 1 and all sufficiently 

large 𝑛, then 𝑇 𝑛 = Θ(𝑓(𝑛))

– Take 𝑇 𝑛 = 9𝑇
𝑛

3
+ 𝑛 for example

• 𝑎 = 9, 𝑏 = 3, and 𝑓 𝑛 = 𝑛 ⟹ 𝑛log𝑏 𝑎 = 𝑛log3 9 = 𝑛2

• 𝑓 𝑛 = 𝑛 = O 𝑛log𝑏 𝑎−𝜖 = O 𝑛log3 9−𝜖 , where 𝜖 = 1

• 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 = Θ 𝑛log3 9 = Θ 𝑛2

• Case1 

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓(𝑛)



8

Master Method...

• The master method theorem

1. If 𝑓 𝑛 = O(𝑛log𝑏 𝑎−𝜖) for some constant 𝜖 > 0, then 𝑇 𝑛 =

Θ(𝑛log𝑏 𝑎)

2. If 𝑓 𝑛 = Θ(𝑛log𝑏 𝑎), then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎 log2 𝑛)

3. If 𝑓 𝑛 = Ω(𝑛log𝑏 𝑎+𝜖) for some constant 𝜖 > 0, and if 
𝑎𝑓(

𝑛

𝑏
) ≤ 𝑐𝑓(𝑛) for some constant 𝑐 < 1 and all sufficiently 

large 𝑛, then 𝑇 𝑛 = Θ(𝑓(𝑛))

– Take 𝑇 𝑛 = 𝑇
2𝑛

3
+ 1 for example

• 𝑎 = 1, 𝑏 =
3

2
, and 𝑓 𝑛 = 1 ⟹ 𝑛log𝑏 𝑎 = 𝑛

log3
2
1
= 𝑛0 = 1

• 𝑓 𝑛 = 1 = Θ 1 = Θ 𝑛log𝑏 𝑎

• 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 log2 𝑛 = Θ log2 𝑛

• Case2 

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓(𝑛)



9

Master Method….

• The master method theorem

1. If 𝑓 𝑛 = O(𝑛log𝑏 𝑎−𝜖) for some constant 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

2. If 𝑓 𝑛 = Θ(𝑛log𝑏 𝑎), then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎 log2 𝑛)

3. If 𝑓 𝑛 = Ω(𝑛log𝑏 𝑎+𝜖) for some constant 𝜖 > 0, and if 𝑎𝑓(
𝑛

𝑏
) ≤ 𝑐𝑓(𝑛)

for some constant 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 =
Θ(𝑓(𝑛))

– Take 𝑇 𝑛 = 3𝑇
𝑛

4
+ 𝑛 log2 𝑛 for example

• 𝑎 = 3, 𝑏 = 4, and 𝑓 𝑛 = 𝑛 log2 𝑛 ⟹ 𝑛log𝑏 𝑎 = 𝑛log4 3

• 𝑓 𝑛 = Ω(𝑛log4 3+𝜖)

• 𝑎𝑓
𝑛

𝑏
= 3𝑓

𝑛

4
= 3

𝑛

4
log2

𝑛

4
= 3

𝑛

4
log2 𝑛 − log2 4

=
3

4
𝑛log2𝑛 −

3

2
𝑛 ≤ 𝑐𝑛 log2 𝑛 = 𝑐𝑓 𝑛 , when 𝑐 =

3

4

• 𝑇 𝑛 = Θ 𝑓 𝑛 = Θ 𝑛 log2 𝑛

• Case3 

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓(𝑛)



10

Master Method…..

• The master method theorem

1. If 𝑓 𝑛 = O(𝑛log𝑏 𝑎−𝜖) for some constant 𝜖 > 0, then 𝑇 𝑛 =

Θ(𝑛log𝑏 𝑎)

2. If 𝑓 𝑛 = Θ(𝑛log𝑏 𝑎), then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎 log2 𝑛)

3. If 𝑓 𝑛 = Ω(𝑛log𝑏 𝑎+𝜖) for some constant 𝜖 > 0, and if 𝑎𝑓(
𝑛

𝑏
) ≤

𝑐𝑓(𝑛) for some constant 𝑐 < 1 and all sufficiently large 𝑛, then 
𝑇 𝑛 = Θ(𝑓(𝑛))

– In each of the three cases, we compare 𝑓(𝑛) with 𝑛log𝑏 𝑎

– In case1, 𝑛log𝑏 𝑎 is larger than 𝑓(𝑛), thus 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

– In case3, 𝑓 𝑛 is larger than 𝑛log𝑏 𝑎, thus 𝑇 𝑛 = Θ(𝑓(𝑛))

– In case2, 𝑓(𝑛) and 𝑛log𝑏 𝑎 are the same size, we multiply by a 
logarithmic factor, and the solution is 𝑇 𝑛 =
Θ(𝑛log𝑏 𝑎 log2 𝑛) = Θ(𝑓(𝑛) log2 𝑛)

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓(𝑛)



11

Master Method……

• Check out the proof from:



12

Questions?

kychen@mail.ntust.edu.tw


