Advanced Analysis

Kuan-Yu Chen (陳冠宇)

2020/09/23 @ TR-212, NTUST

Review

- Please check the uploaded HW file on the moodle!
- Space and Time complexity
 - Big-Oh
 - Omega
 - Theta

Definition [*Big* "*oh*"]: f(n) = O(g(n)) (read as "*f* of *n* is big oh of *g* of *n*") iff (if and only if) there exist positive constants *c* and n_0 such that $f(n) \le cg(n)$ for all $n, n \ge n_0$. \Box

Definition: [Omega] $f(n) = \Omega(g(n))$ (read as "*f* of *n* is omega of *g* of *n*") iff there exist positive constants *c* and n_0 such that $f(n) \ge cg(n)$ for all $n, n \ge n_0$. \Box

Definition: [Theta] $f(n) = \Theta(g(n))$ (read as "*f* of *n* is theta of *g* of *n*") iff there exist positive constants c_1, c_2 , and n_0 such that $c_1g(n) \le f(n) \le c_2g(n)$ for all $n, n \ge n_0$. \Box

Little-Oh

 $o(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant}$ $n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}.$

– The value of n_0 may depend on c

• The definitions of O-notation and o-notation are similar

Definition [*Big "oh"*]: f(n) = O(g(n)) (read as "*f* of *n* is big ob of *g* of *n*") iff (if and only if) there exist positive constants *c* and n_0 such that $f(n) \le cg(n)$ for all $n, n \ge n_0$. \Box

- f(n) = O(g(n)), the bound $0 \le f(n) \le cg(n)$ holds for *some* constant c > 0
- f(n) = o(g(n)), the bound $0 \le f(n) < cg(n)$ holds for *all* constants c > 0
- Examples:

$$-2n = o(n^2)$$
$$-2n^2 \neq o(n^2)$$

Little-Omega

 $\omega(g(n)) = \{ f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant} \\ n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}.$

- By analogy, ω -notation is to Ω -notation as σ -notation is to O-notation

Definition: [Omega] $f(n) = \Omega(g(n))$ (read as "*f* of *n* is omega of *g* of *n*") iff there exist positive constants *c* and n_0 such that $f(n) \ge cg(n)$ for all $n, n \ge n_0$. \Box

• Examples:

$$- \frac{n^2}{2} = \omega(n)$$
$$- \frac{n^2}{2} \neq \omega(n^2)$$

Summary

 $f(n) = \Theta(g(n)) \text{ and } g(n) = \Theta(h(n)) \text{ imply } f(n) = \Theta(h(n))$ f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n)) $f(n) = \Omega(g(n)) \text{ and } g(n) = \Omega(h(n)) \text{ imply } f(n) = \Omega(h(n))$ f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n)) $f(n) = \omega(g(n)) \text{ and } g(n) = \omega(h(n)) \text{ imply } f(n) = \omega(h(n))$

$$f(n) = \Theta(f(n))$$

$$f(n) = O(f(n))$$

$$f(n) = \Omega(f(n))$$

 $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$

f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$ f(n) = o(g(n)) if and only if $g(n) = \omega(f(n))$

Master Method.

• The master method provides a "cookbook" method for solving recurrences of the form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 are constants and f(n) is a positive function

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1 and all sufficiently large *n*, then $T(n) = \Theta(f(n))$

Master Method..

• The master method theorem

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1 and all sufficiently large *n*, then $T(n) = \Theta(f(n))$

- Take
$$T(n) = 9T\left(\frac{n}{3}\right) + n$$
 for example
• $a = 9, b = 3$, and $f(n) = n \Rightarrow n^{\log_b a} = n^{\log_3 9} = n^2$
• $f(n) = n = 0(n^{\log_b a - \epsilon}) = 0(n^{\log_3 9 - \epsilon})$, where $\epsilon = 1$
• $T(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log_3 9}) = \Theta(n^2)$

• Case1

Master Method...

• The master method theorem

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1 and all sufficiently large *n*, then $T(n) = \Theta(f(n))$

- Take
$$T(n) = T\left(\frac{2n}{3}\right) + 1$$
 for example
• $a = 1, b = \frac{3}{2}$, and $f(n) = 1 \implies n^{\log_b a} = n^{\log_3 \frac{1}{2}} = n^0 = 1$
• $f(n) = 1 = \Theta(1) = \Theta(n^{\log_b a})$
• $T(n) = \Theta(n^{\log_b a} \log_2 n) = \Theta(\log_2 n)$

Master Method....

• The master method theorem

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

- Take
$$T(n) = 3T\left(\frac{n}{4}\right) + n\log_2 n$$
 for example

• a = 3, b = 4, and $f(n) = n \log_2 n \Longrightarrow n^{\log_b a} = n^{\log_4 3}$

•
$$f(n) = \Omega(n^{\log_4 3 + \epsilon})$$

• $af\left(\frac{n}{b}\right) = 3f\left(\frac{n}{4}\right) = 3\frac{n}{4}\log_2\frac{n}{4} = 3\frac{n}{4}(\log_2 n - \log_2 4)$ = $\frac{3}{4}n\log_2 n - \frac{3}{2}n \le cn\log_2 n = cf(n)$, when $c = \frac{3}{4}$

•
$$T(n) = \Theta(f(n)) = \Theta(n \log_2 n)$$

• Case3

Master Method.....

• The master method theorem

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$
- In each of the three cases, we compare f(n) with $n^{\log_b a}$
- In case 1, $n^{\log_b a}$ is larger than f(n), thus $T(n) = \Theta(n^{\log_b a})$
- In case3, f(n) is larger than $n^{\log_b a}$, thus $T(n) = \Theta(f(n))$
- In case2, f(n) and $n^{\log_b a}$ are the same size, we multiply by a logarithmic factor, and the solution is $T(n) = \Theta(n^{\log_b a} \log_2 n) = \Theta(f(n) \log_2 n)$

Master Method.....

• Check out the proof from:

Introduction to Algorithms, 3rd Edition (The MIT Press) 3rd Edition by Thomas H. Cormen ~ (Author), Charles E. Leiserson ~ (Author), Ronald L. Rivest ~ (Author), Clifford Stein ~ (Author) ************************************							
#1 Best Seller (in Computer Algorithms							
	Look inside \downarrow	Kindle 🖵 🗆 🛛	Hardcover	Paperback	Other Sellers		
	THOMAS H. CORMEN CHARLES E. LEISERSON RONALD L. RIVEST CLIFFORD STEIN	\$66.14	\$34.24 - \$68.47	\$57.88 - \$66.95	See all 7 versions		
		○ Rent				\$34.24	
		○ Buy used:				\$46.30	
111		OBUY new:				\$68.47	
ALGO		In Stock				Price: \$99.00 30.53 (31%)	
		Ships from and sold by Amazon.com.			4 new from \$68.47		
		Available at a lower price from other sellers that may not			+ \$43	+ \$43.50 shipping	

Questions?

kychen@mail.ntust.edu.tw