Advanced Analysis

Kuan-Yu Chen (i & %)

2020/09/23 @ TR-212, NTUST

Review

« Please check the uploaded HW file on the moodle!

« Space and Time complexity
- Big-Oh
— Omega
— Theta

Definition [Big ‘‘oh’’]: f(n) = O(g (n)) (read as ‘‘f of n is big oh of g of »n”’) iff (if and
only if) there exist positive constants ¢ and n such that f(n) <cg (n) forall n,n>ny. O

Definition: [Omega] f(n) = Q(g (n)) (read as ““f of n is omega of g of n’’) iff there exist
positive constants ¢ and nq such that f(n) 2cg (n) forall n,n=2ny. O

Definition: [Theta] f(n) = ©O(g (n)) (read as ‘‘f of n is theta of g of n’’) iff there exist po-
sitive constants ¢, c,,and ng suchthat c,g(n) <f(n)<c,g(n)forall n,n=2ny. O |

Little-Oh

o(g(n)) = { f(n) : for any positive constant ¢ > 0, there exists a constant
no > 0suchthat 0 < f(n) <cg(n)foralln > ngy} .

— The value of ny may depend on ¢

« The definitions of O-notation and o-notation are similar

Definition [Big ‘“‘oh’’]: f(n) = O(g (n)) (read as *‘f of n is big oh of g of n’’) iff (if and
only if) there exist positive constants ¢ and n such that f(n) < cg (n) forall n,n>ny. O _

- f(n) = 0(g(n)), the bound 0 < f(n) < cg(n) holds for some
constant ¢ > 0

- f(n) = o(g(n)), the bound 0 < f(n) < cg(n) holds for all

constants ¢ > 0

« Examples:
- 2n = o(n?)
- 2n% # o(n?) 3

Little-Omega

w(g(n)) = {f(n): for any positive constant ¢ > 0, there exists a constant
no > 0suchthat 0 < cg(n) < f(n)foralln > ny}.

- By analogy, w-notation is to {l-notation as o-notation is to O-

notation

Definition: [Omega] f(n) = (g (n)) (read as “‘f of n is omega of g of »’’) iff there exist
positive constants ¢ and »n such that f(n) =2cg(n) forall n,n2ny. O '

- Examples:

n2
- 5 =w)
2
n? #* w(n?)

Summary

J(n) = ©(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n)
Jf(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n)
J(n) = Q(g(n)) and g(n) = Q(h(n)) imply f(n) = Q(h(n)
f(n) = o0(g(m)) and g(n) = o(h(n)) imply f(n) = o(h(n))
J(n) = w(g(n)) and g(n) = w(h(n)) Jf(n) = w(h(n))

J(n) O(f(n))
f(n) O(f(n))
f(n) 2(/(n))

f(n) = O(g(n)) if and only if g(n) = O(f(n))|

f(n) = O(g(n)) ifandonlyif g(n) = Q(f(n))
f(n) = o(g(n)) ifandonlyif g(n) = w(f(n))l

Master Method.

« The master method provides a “cookbook” method for solving
recurrences of the form

n

T(n) =aT (b) + f(n)

where a = 1 and b > 1 are constants and f (n) is a positive
function

1. If f(n) = 0(n'°8> =€) for some constant € > 0, then T(n) =
@(nlogb a)

2. If f(n) = O(n'°8» %), then T(n) = O(n'°8 % log, n)

3. If f(n) = Q(n'°8 ¢+€) for some constant € > 0, and if
af (g) < cf(n) for some constant ¢ < 1 and all sufficiently
large n, then T(n) = 0(f(n))

Master Method..

 The master method theorem
T(n) =aT (g) + f(n)
1. If f(n) = 0(n'°8» %=€) for some constant € > 0, then T(n) =
@(nlogb a)
2. If f(n) = ©(n'°8» %), then T(n) = O(n'°8» % log, n)
3. If f(n) = Q(n'°8 ¢+€) for some constant € > 0, and if
af (g) < cf(n) for some constant ¢ < 1 and all sufficiently

large n, then T(n) = 0(f(n))

— Take T(n) = 9T (g) + n for example
ea=9b=3and f(n) =n = nlo8r2 = nlogs % = p2
e f(n) =n = 0(n'°8 2=€) = 0(nl°8:°=€), where € = 1
e T(n) = 0(n'0% @) = @(n'°8: %) = @(n?)
e Casel

Master Method...

 The master method theorem
T(n) =aT (g) + f(n)
1. If f(n) = 0(n'°8» %=€) for some constant € > 0, then T(n) =
@(nlogb a)
2. If f(n) = ©(n'°8» %), then T(n) = O(n'°8» % log, n)
3. If f(n) = Q(n'°8 ¢+€) for some constant € > 0, and if
af (g) < cf(n) for some constant ¢ < 1 and all sufficiently

large n, then T(n) = 0(f(n))

2n

— Take T(n) =T (?) + 1 for example

3 1 logs 1
o a=1,b=5,andf(n)=1 = n%rt=n 2 =n=1

e f(n) =1=0(1) = 6(nloer)
e T(n) = @(nlogb %log, n) = 0(log, n)
o Case?2

Master Method....

e The master method theorem
n

T(n) = aT (b) + f(n)
1. Iff(n)= O(nlogb 47€) for some constant € > 0, then T(n) = @(nlogb)

2. Iff(n) = 0!8 %) then T (n) = 0(n'°8» *log, n)
3. If f(n) = Q(n'°8 2*€) for some constant € > 0, and if af(%) <cf(n)
for some constant ¢ < 1 and all sufficiently large n, then T(n) =

o(f (n))

— Take T(n) = 3T (g) + nlog, n for example
e a=23,b=4,and f(n) =nlog,n = nlo8r @ = nlog.3
f(n) = (nlos: 3+)
af (g) = 3f (g) = 3%log2% = 3§(log2 n —log, 4)
= anogzn — zn < cnlog, n = cf(n), when c = z

T(n) = 0(f(n)) = 6(nlog, n)
Case3

Master Method.....

* The master method theorem
T(n) =aT (g) + f(n)
1. If f(n) = 0(nl°8b27€) for some constant € > 0, then T'(n) =
0(nlogs)
2. If f(n) = ©(n'°8r @) then T(n) = O(n'°8» 2log, n)
3. If f(n) = Q(n!'°8» 4*€) for some constant € > 0, and if af(g) <

cf (n) for some constant ¢ < 1 and all sufficiently large n, then

T(n) = 0(f(n))

— In each of the three cases, we compare f(n) with nlogp a

— In casel, n'°8b @ is larger than f(n), thus T(n) = ©(n'°8» ¢)

— In case3, f(n) is larger than n'°8» ¢ thus T(n) = O(f (n))

— In case2, f(n) and n'°8> are the same size, we multiply by a

logarithmic factor, and the solutionis T(n) =

O(n'°8» ¢ log, n) = O(f(n) log, n)

10

Master Method......

Check out the proof from:

Introduction to Algorithms, 3rd Edition (The MIT Press) 3rd Edition

by Thomas H. Cormen v (Author), Charles E. Leiserson v (Author), Ronald L. Rivest v (Author), Clifford Stein - (Author)
YrrYryryy v 895 ratings

ANESEEIEN in Computer Algorithms

Look inside ¥ _
Kindle CJ0Oo Hardcover Paperback Other Sellers
' CHARLES E. LEISERSON $66.14 $34.24 - $68.47 $57.88 - $66.95 See all 7 versions
-, S OB

- .f-d\‘ O Rent $34.24
(6] \

Py (O Buy used: $46.30
— ‘
LN

(e) Buy new: $68.47
List Price: $99:686

Save: $30.53 (31%)
Ships from and sold by Amazon.com. 4 new from $68_47
+ $43.50 shipping

In Stock.

Available at a lower price from other sellers that may not

11

Questions?

kychen@mail.ntust.edu.tw

12

